Relativistic Angular-Speed Envelope ↔ PFT Coherence
Building on Nazat (2025), we adopt a universal angular-speed ceiling as a physical
envelope for Allen Orbital Lattice (AOL) dynamics. In flat spacetime,
ωmax=c/r. In curved spacetime (exterior Schwarzschild):
ωmax,out= (c/r) · sqrt(1 - rs/r).
For approximate interiors:
ωmax,in= (c/r) · sqrt(1 - rs r² / R³).
A Planck ceiling ωPlanck=c/ℓp ≈ 1.854×1043 rad/s
caps classical rotation.
PFT Coherence Envelope.
We enforce Equilibrion coherence by requiring:
ωpattern(r) ≤ min{ ωmax(r), ωPlanck }.
This guarantees AOL modes remain relativistically admissible and identifies
curvature-induced suppression near compact objects.
Earth Weak-Field Consistency
| Radius r (m) | Region | ωmax (rad/s) | Remark |
|---|---|---|---|
| 1 | Deep interior | ≈ 2.999 × 10⁸ | Near-flat limit |
| 10³ | Inner crust | ≈ 2.997 × 10⁵ | Minor curvature |
| 10⁶ | Mantle layer | ≈ 3.00 × 10² | Weak curvature |
| R⊕ | Surface match | ≈ 4.71 × 10¹ | Joins exterior field |
Exterior Corrections (Earth)
| Radius r (m) | Correction | ωmax (rad/s) | Δ% |
|---|---|---|---|
| R⊕ | 1 − 6.95 × 10⁻¹⁰ | 4.71 × 10¹ | −6.95 × 10⁻⁸% |
| 1.496 × 10¹¹ | 1 − 1.97 × 10⁻¹⁴ | 2.0 × 10⁻³ | −1.97 × 10⁻¹²% |
Strong Curvature: Schwarzschild Black Hole (M = M☉)
| r | ωmax (rad/s) |
|---|---|
| rs | 0 |
| 1.5 rs | 3.9 × 10⁴ |
| 3 rs | 2.7 × 10⁴ |
| 10 rs | 9.6 × 10³ |
| 100 rs | 1.011 × 10³ |
| 1000 rs | 1.01 × 10² |
| 10⁶ rs | 1.01 × 10⁻¹ |
Reference: Md. Shaikhul Hadis Nazat (2025), Universal Maximum Angular Speed for Objects in Flat and Curved Spacetime , Zenodo. DOI/Record: 17312907.